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Constant bond breakup probability model for reversible aggregation processes
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Reversible aggregation processes were simulated for systems of freely diffusing sticky particles. Reversibil-
ity was introduced by allowing that all bonds in the system may break with a given probability per time
interval. In order to describe the kinetics of such aggregation-fragmentation processes, a fragmentation kernel
was developed and then used together with the Brownian aggregation kernel for solving the corresponding
kinetic master equation. The deduced fragmentation kernel considers a single characteristic lifetime for all
bonds and accounts for the cluster morphology by averaging over all possible configurations for clusters of a
given size. It became evident that the simulated cluster-size distributions could be described only when an
additional fragmentation effectiveness was considered. Doing so, the stochastic solutions were in good agree-
ment with the simulated data.

DOI: 10.1103/PhysRevE.65.031405 PACS number~s!: 82.70.Dd, 82.40.Bj, 02.50.2r
er
tio
fu
an
ic
rs

ch

u

s
u

n
a
e
he
ua
tio
r
o

si
if-

e-
ch
nt
s,
ul
is
d

e

l

ro-
nd
tion
ed.
Fi-
clu-

f a

rag-

ible

in

l a
I. INTRODUCTION

Reversible aggregation processes are usually consid
as the result of two competing effects, particle aggrega
and cluster fragmentation. Aggregation processes are of
damental importance in a wide variety of natural systems
industrial applications such as aerosol and soot part
growth, droplet formation, and the production of polyme
paints, and biological material among others@1–3#. Frag-
mentation phenomena may be observed in processes su
droplet degradation and cluster breakup@4–6#. In many
cases, however, both phenomena may occur simultaneo
@7–9#.

In this paper, we study reversible aggregation processe
initially monodisperse systems by means of computer sim
lations. For this purpose, the clusters were considered
move due to free Brownian motion and to form a new bo
as soon as they collide. In order to introduce reversibility,
bonds in the system were allowed to break with a giv
probability per time step. For simplicity, we assumed t
breakup probability to be the same for all bonds. This sit
tion corresponds to a system where the particle interac
potential shows a pronounced but finite minimum at ve
short distances. At initial stages, cluster breakup cannot
cur since no bonds exist in the system and the cluster-
distribution evolves in a way similar to the irreversible d
fusion limited cluster-cluster aggregation~DLCA! regime.
After sufficiently long time, however, cluster breakup b
comes important and, at very long times, the system rea
a dynamic equilibrium between aggregation and fragme
tion. In order to describe the kinetics of such processe
stochastic master equation approach was used to calc
the time evolution of the cluster-size distribution. For th
purpose, an aggregation-fragmentation kernel had to be
veloped. This was achieved by combining the Brownian k

*Author to whom correspondence should be addressed. Emai
dress: rhidalgo@ugr.es
1063-651X/2002/65~3!/031405~8!/$20.00 65 0314
ed
n
n-
d
le
,

as

sly

of
-

to
d
ll
n

-
n

y
c-
ze

es
a-
a

ate

e-
r-

nel, which is known to model pure DLCA, with a nove
fragmentation kernel.

The paper is organized as follows: Section I is the Int
duction. Section II reviews the theoretical backgrou
needed for describing the kinetics of reversible aggrega
processes. In Sec. III, the fragmentation kernel is deduc
Section IV tackles the results and a discussion thereof.
nally, Sec. V summarizes the results and extracts the con
sions.

II. THEORETICAL BACKGROUND

The stochastic formulation for describing the kinetics o
reactive system is given by the master equation@10#. The
master equations for irreversible aggregation and pure f
mentation processes may be found in Refs.@6,11,12#. In this
paper, we combine both cases in order to describe revers
aggregation processes.

If P(NW ,t) denotes the probability for finding the system
the stateNW 5(N1 ,N2 , . . . ,Nn) at timet, its time evolution is
determined by

dP~NW ,t !

dt
5

1

2V (
i

`

(
j

`

ki j @~Ni11!~Nj111d i j !P~NW i j
1 ,t !

2Ni~Nj2d i j !P~NW ,t !#

1
1

2V (
n52

` F ~Nn11! (
i 51

n21

f i (n2 i )P~NW i (n2 i )
2 ,t !

2Nn(
i 51

n21

f i (n2 i )P~NW ,t !G , ~1!

whereNi is the number ofi-size particles,ki j is the aggre-
gation kernel,f i j is the fragmentation kernel, andd i j is the
Kronecker function. The displaced statesNi j

1 and Ni j
2 are

given by
d-
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NW i j
15H ~ . . . ,Ni11, . . . ,Nj11, . . . ,Ni 1 j21, . . . ! for iÞ j

~ . . . ,Ni12, . . . ,N2i21, . . . ! for i 5 j ,

NW i j
25H ~ . . . ,Ni21, . . . ,Nj21, . . . ,Ni 1 j11, . . . ! for iÞ j

~ . . . ,Ni22, . . . ,N2i11, . . . ! for i 5 j .
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The aggregation kernelki j represents the average rate co
stant under which ani-size cluster reacts with aj-size cluster
and forms an (i 1 j )-size aggregate. The fragmentation ke
nel f i j denotes the mean rate constant at which (i 1 j )-size
cluster break spontaneously into twoi- and j-size fragments.
Both, the aggregation and the fragmentation kernel, hav
be understood as orientational and configurational avera
They contain all physical information about the aggregati
fragmentation mechanism.

A classification scheme for homogeneous aggrega
kernels was introduced by van Dongen and Ernst@13#. They
defined two scaling exponentsl andm according to the re-
lationship

k(ai)(a j);alki j ,

ki ! j; i m j l2m, ~2!

wherea.1 is a constant. Since the cluster reactivity can
rise faster than its mass, kernels with eitherl.2 or (l
2m).1 are nonphysical for irreversible aggregation. T
homogeneity parameterl links the aggregation rate con
stants of two smaller clusters to the aggregation rate c
stants of two larger ones. For pure irreversible aggregat
kernels withl<1 show a nongelling behavior, i.e., a clust
of infinite size is formed at infinite time. Forl.1, the rate
of aggregation becomes so fast that an infinite size clu
forms at finite time~gel point!. The exponentm controls the
rate at which big clusters bind to small clusters. For kern
with m,0, the big cluster small cluster union is favored.

Analogously, a similar classification scheme for fragme
tation kernels may be proposed,

f (ai)(a j);al f f i j ,

f i ! j; i m f j l f2m f , ~3!

wherel f andm f are the scaling exponents for cluster fra
mentation. Hence,l f links the fragmentation rate constan
of smaller clusters to the fragmentation rate constants
larger ones. The exponentm f correlates the rates at whic
clusters break into similar or dissimilar fragments. Nonsh
tering fragmentation processes are characterized byl f
>21 @14,15#. For kernels withm f,0, dissimilar breakup is
favored.

The total fragmentation rate constant for clusters of sizn
is given byF(n)5 1

2 ( i 1 j 5nf i j . Assuming thatF(n) ; nx,
shattering fragmentation may be distinguished from n
shattering fragmentation byx,0 and x.0, respectively
@6,16#. The irreversible DLCA regime is usually modele
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using the Brownian kernel. This kernel was derived by co
sidering solid spheres that approach due to Brownian mo
and stick as soon as they come into physical contact.
fractal aggregates, its analytical form is given by

ki j
Brown5

1

4
k11

Smol~ i (1/df )1 j (1/df )!~ i (21/df )1 j (21/df )!, ~4!

wherek11
Smol58kBT/3h is the dimer formation rate constan

df is the cluster fractal dimension,kBT is the thermal energy
and h is the solvent viscosity@17,18#. This kernel has, ac-
cording to Eq.~2!, l50 andm521/df . Since we limit our
simulations to aggregation-fragmentation processes of st
particles, this kernel will be used as aggregation kernelki j in
Eq. ~1!. The employed fragmentation kernelf i j will be de-
duced in the following section.

III. DEVELOPING A FRAGMENTATION KERNEL

The fragmentation kernels most frequently found in t
literature are the constant kernelf i j 5 f 11, which has only
one free parameter, and the sum fragmentation kernelf i j
5 f 11( i 1 j )a, which has two of them. These kernels a
widely used since they are the simplest possible mathem
cal expressions for symmetric kernels@7,19–21#. Although
they yield a reasonably good description of fragmentat
kinetics, they are not based on sound physical grounds
so, we consider it necessary to develop a fragmentation
nel based on reasonable physical assumptions.

For this purpose, we assume all bonds to be of ident
nature and definePr as the probability for a bond to brea
during the time intervalDt. Considering a population ofN2
dimers, the change ofN2 due to fragmentation during th
following time intervalDt is given by

DN252PrN2 . ~5!

For very short time intervals,Pr should be proportional to
Dt and so, we may writePr5Dt/t, wheret is the average
bond lifetime. Taking the limitDt→0 in Eq.~5!, one obtains
the continuous differential equation

dN2

dt
52

N2

t
. ~6!

This equation is valid only for dimers, i.e., clusters that co
tain only one bond. In order to apply it to larger aggregat
it is necessary to consider all possible fragment sizesi and j
5-2
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CONSTANT BOND BREAKUP PROBABILITY MODEL FOR . . . PHYSICAL REVIEW E65 031405
to which the breakup of a givenn5( i 1 j )-size cluster may
lead. We indicate these possibilities using the subindicei
and j

dNn

dt U
i j

52ei j

Nn

t
. ~7!

Hence, the expressiondNn /dtu i j gives the fragmentation rat
of n-size clusters due to breakup intoi- andj-size fragments.
The factorei j is the number of bonds contained inn size
clusters which, on breakup, lead toi- and j-size fragments.
For the sake of clarity, Fig. 1 schematizes the different fr
mentation possibilities for dimers, trimers, and tetrame
The correspondingei j values are also indicated in th
scheme. Dimers can break only into monomers and so, h
e1151. Trimers, however, may fragment by breaking one
two bonds and consequently, havee1252. The situation be-
comes more complicated for larger clusters since they m
have different configurations. In fact, the number of possi
configurations is expected to increase with cluster size.
example, tetramers are either linear or branched~see Fig. 1!.
The former type of tetramers is characterized bye13

l in52 and
e22

l in51 while branched tetramers havee13
ram53 and e22

ram

50. For an aggregating system, both kinds of tetramers
formed and hence, it is convenient to average theei j values
over all possible cluster structures. This implies that, for
ramers, the averageei j should lie in the range of 2<e13
<3 and 0<e22<1. Although it was not explicitly mentioned
before, it can be clearly seen from Eq.~7! that the fragmen-
tation kernel is given by

f i j 5
ei j ~11d i j !

t
, ~8!

whered i j appears for the sake of consistency with Eq.~1!. In
order to obtain an analytical expression forei j , we analyze
the fragmentation possibilities of simulated clusters. The
fore, off-lattice simulations were carried out for spheric
particles of radiusa inside a cubic box of side lengthL
considering periodical boundary conditions~for further de-
tails, see Ref.@22#!. The simulation conditions were the sam
as those detailed in Ref.@11#, i.e., monomeric initial condi-
tions, a total particle numberN05104 and a step lengthl 0
50.5a. The box size was set toL5437.6a in order to estab-
lish a volume fraction of 5.031024. Additionally, the possi-
bility of bond breakup was introduced. For this purpose
random numberj uniformly distributed in@0,1# is generated
and compared withPr for all bonds and at each time ste
Only whenj,Pr , the corresponding bond is broken and t
fragments are separated a fixed distancel s5 l 0/5 in the direc-

FIG. 1. Fragmentation possibilities and correspondingei j values
for clusters smaller than pentamers.
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tion of the line that connects the center of the particles
volved in the bond breakup. If this movement leads to clus
overlapping, the fragments are joined again in a new bo
This implies that reversible aggregation allows for clus
rearrangement@23#.

The obtained clusters were then analyzed one by on
schematized in Fig. 2. The analyzing procedure consist
counting the number ofi-mers that may be generated b
breaking only one bond of the selected cluster. This num
is then averaged with those obtained for other clusters of
same size. By definition, this average isei j . In order to ob-
tain good statistics, 105 individual clusters were considere
within the cluster-size range of@1,100#. This means that the
ei j function could be accessed fori and j <50. The calcu-
latedei j matrix is shown as a three-dimensional plot in F
3~a!. As expected,e1151 ande1252 were obtained. Further
more, the values ofe1352.16 ande2250.845 suggest that, a
least for our simulations, linear tetramers are more freque
found than ramified ones.

In order to extrapolate the fragmentation kernelf i j for
clusters larger than 100-mers, the following empirical fun
tion was fitted to the assessedei j (11d i j ) matrix,

ei j ~11d i j !u f i t5p1~ i p21 j p2!~ i p31 j p3!~ i j !p4. ~9!

The fitted values were p150.4391, p251.006, p3
521.007, andp4520.1363. For the smallest aggregates
is convenient to assign the exactly known values 2e115e12
52. The fitted function is plotted in Fig. 3~b!. The residuals
r i j defined as

r i j 5
ei j ~11d i j !2ei j ~11d i j !u f i t

ei j ~11d i j !u f i t
~10!

are shown in Fig. 3~c!. As can be seen, the residuals seem
be randomly distributed around zero.

Since the aggregates produced by the simulations
loopless, there are (n21) bonds in every cluster containin
n particles. This implies that( i 1 j 5nei j (11d i j )52(n21).
Hence, a convenient way to estimate the accuracy of
fitted ei j (11d i j ) matrix consists in calculating the relativ
deviation of the sum term from its theoretical value 2n
21). We found that the average misfit for the simulat
aggregates (n,100) is about 0.8%. If one considers also t
extrapolated values for larger aggregates, the average rel

FIG. 2. Schematic diagram of a cluster of sizen523 ~for the
sake of simplicity represented only in two dimensions!. The list
shows the number ofi-size fragments that may be obtained b
breaking only one bond. The corresponding subindices for theei j

matrix are indicated as$ i ; j %.
5-3
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FIG. 3. Three-dimensiona
plots of ~a! theei j matrix obtained
from simulated clusters,~b! the
fitted analytical function ei j (1
1d i j )u f i t , and~c! the correspond-
ing residualsr i j defined by Eqs.
~9! and ~10!, respectively.
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deviation becomes 1.1% and 3.1% forn,200 andn,500,
respectively. This means that the fitted fragmentation ke
may be considered as a reasonably good approximation
though one should remind that the relative deviation from
correct form tends to increase for increasing aggregate s

It should be noted that the diagonal elements of theei j
matrix are always smaller than the off-diagonal elements~see
Fig. 3!. Hence, cluster breakup into fragments of similar s
is less likely than cluster breakup into fragments of dissim
lar size. This fact may easily be understood for the case
linear tetramers that havee1352e22 ~see Fig. 1!. It is a par-
ticular case of the more general result that even-size lin
clusters have alwayseiÞ j52ei 5 j .

Resuming, we may affirm that the assumption of a bo
independent breakup probability leads to a fragmenta
kernel characterized bym f521.143, i.e., a model where th
clusters are more frequently broken into fragments of v
dissimilar mass, andl f520.273, which indicates a sligh
decrease of the fragmentation kernelf i j for increasing cluster
size. This, of course, does not mean that larger clusters b
less frequently than smaller ones. On the contrary, here,
obtainsF(n)5 1

2 ( i 1 j 5nf i j ;n, which corresponds clearly to
a nonshattering regime.

IV. RESULTS

Equations~8! and ~9! give a fitted analytical expressio
for the fragmentation kernel. In order to check its validi
we confront the time evolution of the cluster-size distributi
obtained directly from simulations with the correspondi
solutions of the reversible master equation. The simulati
were performed forPr50 ~DLCA!, 131025, 231025,
03140
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331025, 431025, and 531025. The simulation time step
was converted into real time using the relationshipDt
5 l 0

2/6D1. Here,D1 is the monomer diffusion coefficient tha
was assessed using Stokes’s law. For aqueous system
spherical particles of radiusa53.1531027 m at 293 K,Dt
50.005 897 s was obtained. Consequently, the character
bond lifetimes for the above mentionedPr values aret5`,
589.7 s, 294.8 s, 196.6 s, 147.4 s, and 117.9 s, respecti

For solving the reversible master equation, both, the fr
mentation and the aggregation kernels are needed. Sinc
simulations were carried out considering that all clust
cluster collisions lead to bond formation, the Brownian a
gregation kernel is employed together with Eqs.~8! and ~9!
as fragmentation kernel. The corresponding stochastic ma
equation was solved for 105 particles using the method de
scribed in Ref.@10#. The Brownian kernel depends on th
dimer formation rate constantk11

Smol and the fractal dimen-
sion df . The former parameter is given byk11

Smol

58kBT/3h, which yields 11.1310218 m3 s21 for aqueous
systems at 293 K. The latter was directly assessed from
generated cluster structure by means of the radius of gyra
method described in Ref.@24#. The fragmentation kernel de
pends only ont and ei j . Since theei j function is already
known from Eq. ~9! and t is an input parameter for the
simulations, the aggregation-fragmentation kernel is co
pletely determined and there are no freely adjustable par
eters left for fitting.

The obtained fractal dimensions are summarized in Ta
I. It can be observed that the cluster fractal dimension
creases with increasing breakup probability until it reach
values close to approximately 2.0. Then, it seems to beco
5-4
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CONSTANT BOND BREAKUP PROBABILITY MODEL FOR . . . PHYSICAL REVIEW E65 031405
constant and independent of the bond lifetime. This resu
in good agreement with the value of 2.0360.05 reported by
Kolb for lattice aggregation simulations with random bo
breaking @25#. Furthermore, it has been proven that th
model reaches an equilibrium state identical with the o
obtained for branched polymers~lattice animals! @26,27#.

Figure 4~a! shows the time evolution of the cluster-siz
distribution for Pr5131025. Here, the symbols represe
the simulated data while the solid lines indicate the cor
sponding master equation solution. At early stages, the
tem evolves very similar to those aggregating under irrev
ible DLCA conditions. This is not surprising since at th
beginning only a few recently formed bonds exist in t
system. Taking into account that their characteristic lifeti
is approximately 600 s, it becomes evident that breakup
fects cannot yet be important. At later stages, however,
number of monomers tends to stabilize and fluctuate aro
a constant value. The same behavior is also observed fo
larger aggregates at longer times. The time evolution of
weight average cluster sizenw is shown in Fig. 4~b!. As can
be seen, it evolves in a similar manner. After a short ini
transition period, a linear increase in time is observed as l
as fragmentation effects are still negligible. When the sys
reaches a certain degree of aggregation, the growth rate

TABLE I. Average bond lifetimet, cluster fractal dimension
df , time necessary for reaching equilibriumteq, and weight average
equilibrium cluster sizenw

eq , for the different bond breakup prob
abilities Pr .

Pr (105) t ~s! df teq ~s! nw
eq

0 ` 1.7260.04 ` `

1 598.7 1.8360.05 700062000 100625
2 294.8 1.8960.04 350061000 60615
3 196.6 2.0660.06 25006800 40610
4 147.4 1.9760.05 20006600 3068
5 117.9 1.9960.06 18006500 3065
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creases and finally, when the overall fragmentation r
equals the overall aggregation rate, a dynamic equilibrium
achieved.

Both figures show good agreement between the simula
data and the theoretical curves only for the initial stages
aggregation. In this region, fragmentation effects are s
negligible and so, the process corresponds almost to p
DLCA that is known to be well described by the Brownia
kernel. For larger times, the stochastic solutions also rea
dynamic equilibrium, even though important discrepanc
appear. Here, the theoretical solutions reach the equilibr
earlier and at a smaller weight average cluster size than
simulations. This indicates that the fragmentation rate c
stants in the aggregation-fragmentation kernel have b
overestimated. Hence, it becomes clear that some impo
effect has not been taken into account in the theoret
description.

In Refs.@11,28#, we studied slow irreversible aggregatio
processes and showed that cluster-cluster collisions tha
not lead to bond formation give rise to a situation where
clusters are very close to one another and so, it becomes
likely for them to collide again. In order to consider th
effect in the theoretical description, we definedPCi j as the
probability for a given pair of clusters to collide again aft
an unsuccessful collision and used it as a corrective factor
the aggregation kernel. A very similar situation occurs wh
a cluster breaks into two fragments. Since also here the f
ments are very close to one another, it should be equ
likely that they collide again and stick together during t
next time intervals. Consequently, the probability for th
event should be the same asPCi j . Since the overall result o
such events is a change in the configuration of the orig
cluster but not in its mass, an effective cluster fragmentat
event occurs only when a bond is broken and the resul
fragments diffuse away. According to the definition ofPCi j ,
this occurs with a probability of (12PCi j )ei j /t. Conse-
quently, the fragmentation kernel becomes

f i j 5
ei j ~11d i j !~12PCi j !

t
5

ei j ~11d i j !

tNi j
. ~11!
ers

tion-
FIG. 4. ~a! Time evolution of the cluster-size distribution forPr5131025. The symbols correspond to the simulated data for monom
up to 200-mers grouped in logarithmically spaced intervals@(h) monomers, (s) 2- and 3-mers, (n) 4- to 8-mers, (,) 9- to 18-mers, (L)
19- to 38-mers, (1) 39- to 88-mers, and (3) 89- to 200-mers#. The solid lines represent the stochastic solutions for the aggrega
fragmentation kernel given by Eqs.~4! and ~8!. ~b! Time evolution of the corresponding weight average cluster sizenw .
5-5
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FIG. 5. Time evolution of the cluster-size dis
tribution and weight average cluster size show
in Figs. 4~a! and 4~b!. Here, however, the effec
tive aggregation-fragmentation kernel given b
Eqs. ~4! and ~11! was employed for solving the
stochastic master equation.
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Here,Ni j is the mean number of collisions per encounter
a nonaggregating system. It is related toPCi j by Ni j

5( i 51
` iPCi j

( i 21)(12PCi j )5 1/(12PCi j )5N11( i j )b, where
N11 is the mean number of collisions per encounter
monomers andb is a positive constant. The latter paramete
were determined in Ref.@11# for similar simulation condi-
tions, obtainingN1156.1 andb50.35.

It should be pointed out that Eq.~11! represents an effec
tive fragmentation kernel, i.e., a kernel that does not cons
breakup processes that do not lead to fragment separa
According to Eq. ~3!, one obtainsl f520.973 andm f

521.493 for this kernel. This indicates that, although clo
to the shattering regime, the effective fragmentation ker
still describes a nonshattering process and that dissim
break up is even more favored. Figures 5~a! and 5~b! com-
pare the time evolution of the simulated cluster-size distri
tion and weight average cluster size with those obtai
theoretically using the effective fragmentation kernel@Eq.
~11!#. In this plot, the simulated data are the same than
ones in Figs. 4~a! and 4~b!, i.e., they were obtained for
breakup probability ofPr5131025. Now, however, an ex-
cellent agreement between the theoretical and simulated
is observed for all times. The considerable fluctuatio
around the mean values that appear at long aggregation t
are due to the relatively poor statistics when only a relativ
small number of aggregates remains in the system. Using
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effective aggregation-fragmentation kernel, a good agr
ment was also found for all bond breakup probabilitiesPr

studied in this paper. As an example, the obtained results
Pr5531025 are shown in Figs. 6~a! and 6~b!. As expected,
the time necessary for reaching the dynamic equilibriumteq

is shorter than the one corresponding to the smaller fragm
tation probability Pr5131025. Furthermore, the equilib-
rium weight average cluster sizenw

eq reached at long times is
also considerably smaller. The obtainedteq and nw

eq values
are shown in Table I for all bond breakup probabilities. It c
be seen thatt, teq, andnw

eq are strongly correlated. The rela
tively small number of data points, however, does not all
to determine the analytical relationship that might exist b
tween them. So far, a linear relationship may not be d
carded. ForPr50, i.e., the DLCA regime, an average bon
lifetime of t5` was considered and so, the time spent
reaching equilibrium and the corresponding weight aver
cluster size becomes also infinite.

Since the fragmentation kernel was derived by consid
ing a cluster collection obtained from the asymptotic stea
state, the implicitly considered fractal dimension for this k
nel was df52.0. At early stages, however, fragmentati
does not yet play an important role and so, the expec
fractal dimension here is approximately 1.75~DLCA!. Con-
sequently, the proposed aggregation-fragmentation ke
should evolve according to this fractal dimension chan
s up

tive
FIG. 6. Time evolution of the cluster-size distribution forPr5531025. The symbols correspond to the simulated data for monomer
to 200-mers grouped in logarithmically spaced intervals@(h) monomers, (s) 2- and 3-mers, (n) 4- to 8-mers, (,) 9- to 18-mers, (L)
19- to 38-mers, (1) 39- to 88-mers, and (3) 89- to 200-mers#. The solid lines represent the stochastic solutions for the effec
aggregation-fragmentation kernel given by Eqs.~4! and ~11!. ~b! Time evolution of the corresponding weight average cluster sizenw .
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from 1.75 to 2.0. In this study, however, a constant frac
dimension value of 2.0 was considered for the en
aggregation-fragmentation kernel. Hence, some discre
cies may be expected between the calculations and the s
lations at the initial stages of the aggregation-fragmenta
process. Nevertheless, this is not observed. It may be un
stood as follows: As mentioned above, at the early stage
significant breakup occurs and hence, the mismatch in
duced by the fragmentation kernel should not be detecta
The effect of the different fractal dimension used in t
Brownian aggregation kernel is also not observed since
solutions are not very sensitive todf changes. According to
the literature, DLCA processes can be fitted satisfacto
using even the constant kernel@29#.

It should be pointed out that any change in the simulat
step lengthl 0 strongly affects the value ofN11 and, to a
smaller extent, also the value ofb. This means that the nu
merical values of the fitted parameters contained in
aggregation-fragmentation kernel may not be considere
universal and so, it becomes necessary to determine them
any other simulation conditions. The effect of the step len
on the simulation of Brownian motion was already stud
by Gonzalez@30–33#. He also found a nonuniversal behavi
and so, wondered about the correct step length for sim
tions of aggregation processes. Unfortunately, there is, so
no answer to this question. In our case, the situation is e
worse since we need to introduce an additional separa
distancel s for fragmentation events and again here, the sa
question arises: How far should the fragments be separa
On one hand, one should keep in mind that Brownian mot
is already taken into account byl 0. Hence,l s should be zero,
i.e., the bound is broken but no movement is made until
next step. On the other hand, when an bound is physic
broken the corresponding particles have to get out of th
respective energetic minimum and hence, some minim
separation becomes necessary. We chosel s5a/10 as a rea-
sonable value. Furthermore, changes inl s even by a factor of
2 showed to have no important effect on the simulations

As mentioned above, the effective fragmentation ker
considers only those fragmentation events that give rise
definitive cluster breakup. The cluster-size distribution o
tained from simulations, however, also accounts for the
cently produced fragments that may not survive the n
simulation step. Depending on the importance of this effe
one expects the equilibrium weight average cluster sizenw

eq
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t
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calculated from the simulated data to be smaller than
analytical solution or not. The fact that there was no sign
cant deviation between the theoretical and the simula
data, indicates that the number of these unstable fragm
should be small in comparison with the stable ones. T
implies also that the unstable fragments have quite a s
average lifetime and so, the timetc spent between two con
secutive collisions of a pair of clusters must be very sm
This supports the assumption,tc.0, used in Refs.@11,28#
for deducing an analytical kernel for irreversible aggregat
processes.

V. CONCLUSIONS

Starting from the hypothesis of a constant bond brea
probability, it was possible to deduce an analytical kernel
aggregation-fragmentation processes. For this purpose,
fragmentation possibilities of 105 different clusters, obtained
from computer simulations, were analyzed. The dedu
fragmentation kernel was shown to be of nonshattering ty
In order to check its validity, aggregation-fragmentation p
cesses were simulated for different average bond lifetim
and the obtained cluster-size distributions were confron
with the corresponding solutions of the reversible mas
equation. However, important discrepancies were fou
These discrepancies could be overcome by introducing
concept of fragmentation effectiveness, i.e., it became ne
sary to consider as cluster fragmentation only those ev
where a bond breaks and the obtained fragments are sep
enough so that they will not stick again during the followin
time steps. The fact that the solutions corresponding to
effective aggregation-fragmentation kernel agree so w
with the simulated data proves the consistency of the mo
At this point, we would like to point out that these resu
back the assumptionsNi j 5 N11( i j )b andtc.0 introduced in
Ref. @11#.
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