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Constant bond breakup probability model for reversible aggregation processes
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Reversible aggregation processes were simulated for systems of freely diffusing sticky particles. Reversibil-
ity was introduced by allowing that all bonds in the system may break with a given probability per time
interval. In order to describe the kinetics of such aggregation-fragmentation processes, a fragmentation kernel
was developed and then used together with the Brownian aggregation kernel for solving the corresponding
kinetic master equation. The deduced fragmentation kernel considers a single characteristic lifetime for all
bonds and accounts for the cluster morphology by averaging over all possible configurations for clusters of a
given size. It became evident that the simulated cluster-size distributions could be described only when an
additional fragmentation effectiveness was considered. Doing so, the stochastic solutions were in good agree-
ment with the simulated data.
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I. INTRODUCTION nel, which is known to model pure DLCA, with a novel
fragmentation kernel.

Reversible aggregation processes are usually considered The paper is organized as follows: Section | is the Intro-
as the result of two competing effects, particle aggregatioluction. Section Il reviews the theoretical background
and cluster fragmentation. Aggregation processes are of furieeded for describing the kinetics of reversible aggregation
damental importance in a wide variety of natural systems an@rocesses. In Sec. lll, the fragmentation kernel is deduced.
industrial applications such as aerosol and soot partic|§ection IV tackles the results and a discussion thereof. Fi-
growth, droplet formation, and the production of p0|ymer3,n_ally, Sec. V summarizes the results and extracts the conclu-
paints, and biological material among oth¢ds-3]. Frag-  SIONS.
mentation phenomena may be observed in processes such as

droplet degradation and cluster break[#-6]. In-many Il THEORETICAL BACKGROUND
cases, however, both phenomena may occur simultaneously
[7-9]. The stochastic formulation for describing the kinetics of a

In this paper, we study reversible aggregation processes oéactive system is given by the master equafid@]. The
initially monodisperse systems by means of computer simumaster equations for irreversible aggregation and pure frag-
lations. For this purpose, the clusters were considered tmentation processes may be found in RE#s11,13. In this
move due to free Brownian motion and to form a new bondpaper, we combine both cases in order to describe reversible
as soon as they collide. In order to introduce reversibility, allaggregation processes.

bonds in the system were allowed to break with a given |f p(N,t) denotes the probability for finding the system in

probability per time step. For simplicity, we assumed thethe stateN= (N, N N.) at timet. its time evolution is
breakup probability to be the same for all bonds. This situa- (N1,Nz, n) attimet, its t volution

tion corresponds to a system where the particle interaction
potential shows a pronounced but finite minimum at very
short distances. At initial stages, cluster breakup cannot oc-dP(N,t)
cur since no bonds exist in the system and the cluster-size gt
distribution evolves in a way similar to the irreversible dif-

determined by

_iVE 2 kij[ (N +1)(N; +1+5,,)P(N,J ,t)
! i

fusion limited cluster-cluster aggregatigbLCA) regime. —Ni(Nj—ﬁij)P(N,t)]

After sufficiently long time, however, cluster breakup be-

comes important and, at very long times, the system reaches 1 < ! o

a dynamic equilibrium between aggregation and fragmenta- E (Nn+1);1 fitn-nP(Ni¢n—iy,t)

tion. In order to describe the kinetics of such processes, a
stochastic master equation approach was used to calculate R
the time evolution of the cluster-size distribution. For this —Nn > finiyP(ND) |,
purpose, an aggregation-fragmentation kernel had to be de- =1
veloped. This was achieved by combining the Brownian ker-
whereN; is the number of-size particlesk;; is the aggre-
gation kernel [fij is the fragmentation kernel, ang; is the
* Author to whom correspondence should be addressed. Email ad<ronecker function. The displaced StatNﬁ and N;; are
dress: rhidalgo@ugr.es given by
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v (’NI+111NJ+111N|+J_1,) f0r |7&J
( ..,Ni+2,...,N2i_1,...) for IZJ,

(G Ni=L, L Nj= L, NG L) for i
Tl N=2, Ny L L) for i=j.

The aggregation kernd{;; represents the average rate con-using the Brownian kernel. This kernel was derived by con-
stant under which aisize cluster reacts withjasize cluster  sidering solid spheres that approach due to Brownian motion
and forms ani(+ j)-size aggregate. The fragmentation ker-and stick as soon as they come into physical contact. For
nel f;; denotes the mean rate constant at which j)-size  fractal aggregates, its analytical form is given by
cluster break spontaneously into tivcandj-size fragments.
Both, the aggregation and the fragmentation kernel, have to
be understood as orientational and configurational averages.
They contain all physical information about the aggregation-
fragmentation mechanism.

A classification scheme for homogeneous aggregatio
kernels was introduced by van Dongen and Efts8i. They
defined two scaling exponenisand u according to the re-

1
kiB]_rown:Zkﬂnoti(lldf)_l_j(1/df))(i(—1/df)+j(—1/df))' @)

therekfl"“":SkBT/Sn is the dimer formation rate constant,

d; is the cluster fractal dimensiokgT is the thermal energy,
and 7 is the solvent viscosity17,18. This kernel has, ac-

lationship cording to Eq.(2), \=0 andu=—1/d;. Since we limit our
simulations to aggregation-fragmentation processes of sticky
k(ai)(aj)wakk” , particles, this kernel will be used as aggregation kekfeh
Eqg. (1). The employed fragmentation kerng| will be de-
Ki<j~ 124, (2)  duced in the following section.
wherea>1 is a constant. Since the cluster reaCtiViw cannot IIl. DEVELOPING A FRAGMENTATION KERNEL

rise faster than its mass, kernels with either2 or (A
—M)>1 are nonphysica| for irreversible aggregation_ The The fragmentation kernels most frequently found in the
homogeneity parametex links the aggregation rate con- literature are the constant kerng|=f;, which has only
stants of two smaller clusters to the aggregation rate corene free parameter, and the sum fragmentation kefel,
stants of two larger ones. For pure irreversible aggregatior;- f11(i +j)“, which has two of them. These kernels are
kernels with\ <1 show a nongelling behavior, i.e., a cluster Widely used since they are the simplest possible mathemati-
of infinite size is formed at infinite time. For>1, the rate ~ cal expressions for symmetric kernglg19-21. Although
of aggregation becomes so fast that an infinite size clustéhey yield a reasonably good description of fragmentation
forms at finite time(gel poind. The exponenj controls the  kinetics, they are not based on sound physical grounds and
rate at which big clusters bind to small clusters. For kernel$0, we consider it necessary to develop a fragmentation ker-
with <0, the big cluster small cluster union is favored. ~hel based on reasonable physical assumptions.
Analogously, a similar classification scheme for fragmen-  For this purpose, we assume all bonds to be of identical

tation kernels may be proposed, nature and defin®, as the probability for a bond to break
during the time intervalit. Considering a population df,
f aiyap~a*fi . dimers, the change d¥, due to fragmentation during the

following time intervalAt is given by
fi<j~iﬂfj>\fﬂuf, (3)
AN,=—P,N,. (5)
where\; and us are the scaling exponents for cluster frag-
mentation. Hence)\; links the fragmen’gation rate constants g, very short time intervals®, should be proportional to
of smaller clusters to the fragmentation rate constants of; anq S0, we may writd®, =At/7, wherer is the average

larger ones. The exponept; correlates the rates at which 1), jitetime. Taking the limitst—0 in Eq.(5), one obtains
clusters break into similar or dissimilar fragments. Nonshat-,[he continuous differential equation

tering fragmentation processes are characterized \py
=—1 [14,15. For kernels withu;<0, dissimilar breakup is dN N
favored. —2__ 2
The total fragmentation rate constant for clusters of mize dt T

is given byF(n)=%Ei+]—:nfij . Assuming that=(n) ~ n*,

shattering fragmentation may be distinguished from non-This equation is valid only for dimers, i.e., clusters that con-
shattering fragmentation bx<<0 and x>0, respectively tain only one bond. In order to apply it to larger aggregates,
[6,16]. The irreversible DLCA regime is usually modeled it is necessary to consider all possible fragment sizasd|

(6)
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pentamers 1 {18;5}

Y ks, ram _ hexamers 1 {17;6}
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FIG. 1. Fragmentation possibilities and correspondifgalues ronamers 2 {14;9)
decamers 1 {13;10}

for clusters smaller than pentamers.

FIG. 2. Schematic diagram of a cluster of size 23 (for the
sake of simplicity represented only in two dimensiprihe list
shows the number of-size fragments that may be obtained by
breaking only one bond. The corresponding subindices forethe
matrix are indicated a§;j}.

to which the breakup of a givem= (i + j)-size cluster may
lead. We indicate these possibilities using the subindices
andj

dN, =—e~-% @
dt i ore tion of the line that connects the center of the particles in-

volved in the bond breakup. If this movement leads to cluster
Hence, the expressiaN, /dt[;; gives the fragmentation rate overlapping, the fragments are joined again in a new bond.
of n-size clusters due to breakup iritoandj-size fragments.  This implies that reversible aggregation allows for cluster
The factore;; is the number of bonds contained msize  rearrangemer23].
clusters which, on breakup, lead itoandj-size fragments. The obtained clusters were then analyzed one by one as
For the sake of clarity, Fig. 1 schematizes the different fragschematized in Fig. 2. The analyzing procedure consists in
mentation possibilities for dimers, trimers, and tetramerscounting the number of-mers that may be generated by
The correspondinge;; values are also indicated in the preaking only one bond of the selected cluster. This number
scheme. Dimers can break only into monomers and so, havg then averaged with those obtained for other clusters of the
e;;=1. Trimers, however, may fragment by breaking one ofsame size. By definition, this averagesis. In order to ob-
two bonds and consequently, hawg=2. The situation be- tain good statistics, fOindividual clusters were considered
comes more complicated for larger clusters since they mayiithin the cluster-size range $1,100. This means that the
have different configurations. In fact, the number of possibleeij function could be accessed forand j<50. The calcu-
configurations is expected to increase with cluster size. Fogted e;; matrix is shown as a three-dimensional plot in Fig.
example, tetramers are either linear or branctsee Fig. 1 3(a). As expectede;;= 1 ande;,= 2 were obtained. Further-
The former type of tetramers is characterizedely=2 and more, the values aé,s=2.16 ande,,= 0.845 suggest that, at

ey =1 while branched tetramers hawe§3"=3 and €™ least for our simulations, linear tetramers are more frequently
=0. For an aggregating system, both kinds of tetramers arfound than ramified ones.
formed and hence, it is convenient to averagedhesalues In order to extrapolate the fragmentation kerrfigl for

over all possible cluster structures. This implies that, for tetclusters larger than 100-mers, the following empirical func-
ramers, the average; should lie in the range of 2e;3  tion was fitted to the assessegl(1+ &;;) matrix,
<3 and Ose,,=<1. Although it was not explicitly mentioned
before, it can be clearly seen from E@) that the fragmen- € (1+ &) |rit=pa(iP2+jP2)(iPa+jPe)(ij)P4.  (9)
tation kernel is given by
The fitted values werep;=0.4391, p,=1.006, p;
&j(1+ ;) =—1.007, anth,= —0.1363. For the smallest aggregates, it
I ®) is convenient to assign the exactly known values 2 e,
=2. The fitted function is plotted in Fig.(B). The residuals
wheres;; appears for the sake of consistency with Bg. In  rj; defined as
order to obtain an analytical expression &y, we analyze
the fragmentation possibilities of simulated clusters. There- e (1+ ;) —ej(1+ &)l
fore, off-lattice simulations were carried out for spherical hij = & (1+ 6)lit
particles of radiusa inside a cubic box of side length
considering periodical boundary conditioffer further de- are shown in Fig. &). As can be seen, the residuals seem to
tails, see Refl22]). The simulation conditions were the same be randomly distributed around zero.
as those detailed in Refl1], i.e., monomeric initial condi- Since the aggregates produced by the simulations are
tions, a total particle numbe¥,=10* and a step length, loopless, there aren(-1) bonds in every cluster containing
=0.5a. The box size was set lo=437.@ in order to estab- n particles. This implies thak, . ;_.e;(1+ &;)=2(n—1).
lish a volume fraction of 5.8 10 %. Additionally, the possi- Hence, a convenient way to estimate the accuracy of the
bility of bond breakup was introduced. For this purpose, ditted e;;(1+ &;;) matrix consists in calculating the relative
random numbeg uniformly distributed in 0,1] is generated deviation of the sum term from its theoretical valuen2(
and compared withP, for all bonds and at each time step. —1). We found that the average misfit for the simulated
Only whené< P, , the corresponding bond is broken and theaggregatesn(<100) is about 0.8%. If one considers also the
fragments are separated a fixed distaned (/5 in the direc-  extrapolated values for larger aggregates, the average relative

(10
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deviation becomes 1.1% and 3.1% fox 200 andn<500, 3x10 °, 4x10 °, and 5<10 °. The simulation time step
respectively. This means that the fitted fragmentation kernelvas converted into real time using the relationskip
may be considered as a reasonably good approximation even|3/6D,. Here,D, is the monomer diffusion coefficient that
correct form tends to increase for increasing aggregate Siz%pherical particles of radius=3.15< 107 m at 293 K,At
It should be noted that the diagonal elements of@he  — ¢ 005897 s was obtained. Consequently, the characteristic
matrix are always smaller than the off-diagonal elemésag bond lifetimes for the above mention&j values arer=—»,
Fig. 3). Hence, cluster breakup into fragments of similar size589 7's,294.8's, 196.6 s, 147.4 s, and 117.9 s, respectively
For solving the reversible master equation, both, the frag-

is less likely than cluster breakup into fragments of dissimi-
lar size. This fact may easily be understood for the case 0|£nentation and the aggregation kernels are needed. Since the
a§imulations were carried out considering that all cluster-

linear tetramers that have ;= 2e,, (see Fig. L It is a par-
cluster collisions lead to bond formation, the Brownian ag-

ticular case of the more general result that even-size line
clusters have alwa i=2e_. . . !

Resuming, we nﬁijaffirrrﬁhat the assumption of a bondrégation kermel is employed together with E(. and (9)
independent breakup probability leads to a fragmentatio®S fragmentanon kernel. The co_rrespon_dlng stochastic master
kernel characterized by = — 1.143, i.e., a model where the €duation was solved for ¥(particles using the method de-
clusters are more frequently broken into fragments of veryscribed in Ref[10]. The Brownian kernel depends on the
dissimilar mass, and;=—0.273, which indicates a slight dimer formation rate constam;"® and the fractal dimen-
decrease of the fragmentation kerfigifor increasing cluster sion d;. The former parameter is given b)kf{“"'
size. This, of course, does not mean that larger clusters break8kgT/37, which yields 11.x 10 *® m®s™! for aqueous
less frequently than smaller ones. On the contrary, here, orgystems at 293 K. The latter was directly assessed from the
obtainsF(n) = %Ei+,~:nfij ~n, which corresponds clearly to generated cluster structure by means of the radius of gyration
a nonshattering regime. method described in Reff24]. The fragmentation kernel de-
pends only onr ande;; . Since thee;; function is already
known from Eq.(9) and 7 is an input parameter for the
simulations, the aggregation-fragmentation kernel is com-

Equations(8) and (9) give a fitted analytical expression pletely determined and there are no freely adjustable param-
for the fragmentation kernel. In order to check its validity, eters left for fitting.
we confront the time evolution of the cluster-size distribution  The obtained fractal dimensions are summarized in Table
obtained directly from simulations with the correspondingl. It can be observed that the cluster fractal dimension in-
solutions of the reversible master equation. The simulationsreases with increasing breakup probability until it reaches
were performed forP,=0 (DLCA), 1x10 % 2x10 %, values close to approximately 2.0. Then, it seems to become

IV. RESULTS
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TABLE |. Average bond lifetimer, cluster fractal dimension creases and finally, when the overall fragmentation rate

ds, time necessary for reaching equilibriufif, and weight average  equals the overall aggregation rate, a dynamic equilibrium is
equilibrium cluster sizen3?, for the different bond breakup prob- achieved.

abilities P, . Both figures show good agreement between the simulated
data and the theoretical curves only for the initial stages of
P (10°) 7 (9 ds %9 (s) ngd aggregation. In this region, fragmentation effects are still
negligible and so, the process corresponds almost to pure
0 o 1.72+0.04 0 o0

DLCA that is known to be well described by the Brownian

1 598.7  1.8%0.05  700@-2000  10G-25 kernel. For larger times, the stochastic solutions also reach a
2 294.8  1.890.04  350G-1000  6G-15 dynamic equilibrium, even though important discrepancies
3 196.6  2.06:0.06 2500-800 40+ 10 appear. Here, the theoretical solutions reach the equilibrium
4 1474  1.9%0.05 2006-600 30-8 earlier and at a smaller weight average cluster size than the
5 1179  1.99-0.06 1806 500 305 simulations. This indicates that the fragmentation rate con-

stants in the aggregation-fragmentation kernel have been
overestimated. Hence, it becomes clear that some important
constant and independent of the bond lifetime. This result i§féct has not been taken into account in the theoretical
in good agreement with the value of 2:08.05 reported by ~description. . . . .
Kolb for lattice aggregation simulations with random bond In Refs.[11,28, we studied slow irreversible aggregation
breaking [25]. Furthermore, it has been proven that this Processes and showed that cluster-cluster collisions that do

P . . . ot lead to bond formation give rise to a situation where the
model reaches an equilibrium state identical with the ond! .
obtained for branched polymefiattice animals [26,27. Clusters are very close to one another and so, it becomes very

Figure 4a) shows the time evolution of the cluster-size likely fpr them to cplhde again. In order to consider this

Lo - e effect in the theoretical description, we defined;; as the
distribution for P,=1x10"". Here, the symbols represent . ohapility for a given pair of clusters to collide again after
the simulated data while the solid lines indicate the correyp ynsuccessful collision and used it as a corrective factor for
sponding master equation solution. At early stages, the sygne aggregation kernel. A very similar situation occurs when
tem evolves very similar to those aggregating under irreversy cjuster breaks into two fragments. Since also here the frag-
ible DLCA conditions. This is not surprising since at the ments are very close to one another, it should be equally
beginning only a few recently formed bonds exist in thelikely that they collide again and stick together during the
system. Taking into account that their characteristic lifetimenext time intervals. Consequently, the probability for this
is approximately 600 s, it becomes evident that breakup efevent should be the same Bg;; . Since the overall result of
fects cannot yet be important. At later stages, however, theuch events is a change in the configuration of the original
number of monomers tends to stabilize and fluctuate arounduster but not in its mass, an effective cluster fragmentation
a constant value. The same behavior is also observed for thevent occurs only when a bond is broken and the resulting
larger aggregates at longer times. The time evolution of théragments diffuse away. According to the definitionRy;; ,
weight average cluster sizg, is shown in Fig. 4b). As can  this occurs with a probability of (Pc;;)e;j/7. Conse-
be seen, it evolves in a similar manner. After a short initialquently, the fragmentation kernel becomes
transition period, a linear increase in time is observed as long f _eij(1+ 5,)(1-Pey) Cey(1+ 5))

as fragmentation effects are still negligible. When the system

. 4 i (11)
reaches a certain degree of aggregation, the growth rate de- . T TNjj
1=
o a) b)
™ 1004
0.14 o-eoec
Z 0014 =
=z 104
0.001 5
0.0001 4 Y
Yo I
0.00001 o Y 9000 1 10 100 1000 10000
time (s) time (s)

FIG. 4. (a) Time evolution of the cluster-size distribution fBf=1x 10"5. The symbols correspond to the simulated data for monomers
up to 200-mers grouped in logarithmically spaced interfI3) monomers, Q) 2- and 3-mers,4) 4- to 8-mers, {/) 9- to 18-mers, )
19- to 38-mers, {) 39- to 88-mers, andX) 89- to 200-merk The solid lines represent the stochastic solutions for the aggregation-
fragmentation kernel given by Eqggl) and(8). (b) Time evolution of the corresponding weight average cluster rsjze
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100
0.14,

o

E_ 0.014 FIG. 5. Time evolution of the cluster-size dis-
= tribution and weight average cluster size shown
in Figs. 4a) and 4b). Here, however, the effec-
tive aggregation-fragmentation kernel given by
Egs. (4) and (11) was employed for solving the

stochastic master equation.
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0.0001 4

0.00001 3
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Here,\j; is the mean number of collisions per encounter foreffective aggregation-fragmentation kernel, a good agree-
a nonaggregating system. It is related Ry;; by N ment was also found for all bond breakup probabilitigs
=37 ,iP&(1—Peij) = U(1—Pei) =Ni(ij)°,  where  studied in this paper. As an example, the obtained results for
N, is the mean number of collisions per encounter forP,=5x10" > are shown in Figs. (@) and Gb). As expected,
monomers and is a positive constant. The latter parametersthe time necessary for reaching the dynamic equilibrififn
were determined in Refl11] for similar simulation condi- is shorter than the one corresponding to the smaller fragmen-
tions, obtainingN;;=6.1 andb=0.35. tation probability P,=1x10"°. Furthermore, the equilib-

It should be pointed out that E(L1) represents an effec- rium weight average cluster sirg” reached at long times is
tive fragmentation kernel, i.e., a kernel that does not consideslso considerably smaller. The obtaing&d and ng values
breakup processes that do not lead to fragment separatiogre shown in Table | for all bond breakup probabilities. It can
According to Eqg.(3), one obtains\{=—0.973 andu;  be seen that, t®9 andn{? are strongly correlated. The rela-
= —1.493 for this kernel. This indicates that, although closetively small number of data points, however, does not allow
to the shattering regime, the effective fragmentation kerneto determine the analytical relationship that might exist be-
still describes a nonshattering process and that dissimildween them. So far, a linear relationship may not be dis-
break up is even more favored. Figurdg)sand §b) com-  carded. FoiP, =0, i.e., the DLCA regime, an average bond
pare the time evolution of the simulated cluster-size distribudifetime of =% was considered and so, the time spent for
tion and weight average cluster size with those obtainedeaching equilibrium and the corresponding weight average
theoretically using the effective fragmentation kerfiEh.  cluster size becomes also infinite.

(11)]. In this plot, the simulated data are the same than the Since the fragmentation kernel was derived by consider-
ones in Figs. @) and 4b), i.e., they were obtained for a ing a cluster collection obtained from the asymptotic steady
breakup probability oP,=1x10 °. Now, however, an ex- state, the implicitly considered fractal dimension for this ker-
cellent agreement between the theoretical and simulated datel was d;=2.0. At early stages, however, fragmentation
is observed for all times. The considerable fluctuationsdoes not yet play an important role and so, the expected
around the mean values that appear at long aggregation timésictal dimension here is approximately 1.@3LCA). Con-

are due to the relatively poor statistics when only a relativelysequently, the proposed aggregation-fragmentation kernel
small number of aggregates remains in the system. Using thghould evolve according to this fractal dimension change

b)

1004
0.14

a)
-
= \
= 0,01+
4
0.001+

0.0001 4

0.00001 {

X

o o o0 10600 1 10 100 1000 10000
time (s) time (s)

FIG. 6. Time evolution of the cluster-size distribution r=5x10"°. The symbols correspond to the simulated data for monomers up
to 200-mers grouped in logarithmically spaced intery4[S) monomers, ©) 2- and 3-mers, £) 4- to 8-mers, /) 9- to 18-mers, ©)
19- to 38-mers, §) 39- to 88-mers, andX) 89- to 200-merk The solid lines represent the stochastic solutions for the effective
aggregation-fragmentation kernel given by E@s.and(11). (b) Time evolution of the corresponding weight average cluster igjze
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from 1.75 to 2.0. In this study, however, a constant fractalcalculated from the simulated data to be smaller than the
dimension value of 2.0 was considered for the entireanalytical solution or not. The fact that there was no signifi-
aggregation-fragmentation kernel. Hence, some discrepamant deviation between the theoretical and the simulated
cies may be expected between the calculations and the simdata, indicates that the number of these unstable fragments
lations at the initial stages of the aggregation-fragmentatioshould be small in comparison with the stable ones. This
process. Nevertheless, this is not observed. It may be undemplies also that the unstable fragments have quite a short
stood as follows: As mentioned above, at the early stages naverage lifetime and so, the tintg spent between two con-
significant breakup occurs and hence, the mismatch introsecutive collisions of a pair of clusters must be very small.
duced by the fragmentation kernel should not be detectablé&his supports the assumption,~0, used in Refs[11,2§

The effect of the different fractal dimension used in thefor deducing an analytical kernel for irreversible aggregation
Brownian aggregation kernel is also not observed since itprocesses.
solutions are not very sensitive th changes. According to

the literature, DLCA processes can be fitted satisfactorily

using even the constant kerrj@9].

It should be pointed out that any change in the simulation Starting from the hypothesis of a constant bond breakup
step lengthl, strongly affects the value dfi;; and, to a probability, it was possible to deduce an analytical kernel for
smaller extent, also the value bf This means that the nu- aggregation-fragmentation processes. For this purpose, the
merical values of the fitted parameters contained in thdéragmentation possibilities of 2@ifferent clusters, obtained
aggregation-fragmentation kernel may not be considered &som computer simulations, were analyzed. The deduced
universal and so, it becomes necessary to determine them félagmentation kernel was shown to be of nonshattering type.
any other simulation conditions. The effect of the step lengthn order to check its validity, aggregation-fragmentation pro-
on the simulation of Brownian motion was already studiedcesses were simulated for different average bond lifetimes
by GonzaleZ30-33. He also found a nonuniversal behavior and the obtained cluster-size distributions were confronted
and so, wondered about the correct step length for simulawith the corresponding solutions of the reversible master
tions of aggregation processes. Unfortunately, there is, so fagquation. However, important discrepancies were found.
no answer to this question. In our case, the situation is evemhese discrepancies could be overcome by introducing the
worse since we need to introduce an additional separatioconcept of fragmentation effectiveness, i.e., it became neces-
distancd  for fragmentation events and again here, the samsary to consider as cluster fragmentation only those events
guestion arises: How far should the fragments be separatedihere a bond breaks and the obtained fragments are separate
On one hand, one should keep in mind that Brownian motiorenough so that they will not stick again during the following
is already taken into account lby. Hence| should be zero, time steps. The fact that the solutions corresponding to the
i.e., the bound is broken but no movement is made until theffective aggregation-fragmentation kernel agree so well
next step. On the other hand, when an bound is physicallyith the simulated data proves the consistency of the model.
broken the corresponding particles have to get out of theiAt this point, we would like to point out that these results
respective energetic minimum and hence, some minimurback the assumption's;; = N14(ij)P andt,=0 introduced in
separation becomes necessary. We chgs@/10 as a rea- Ref.[11].
sonable value. Furthermore, changeksiaven by a factor of
2 showed to have no important effect on the simulations.

As mentioned above, the effective fragmentation kernel
considers only those fragmentation events that give rise to a This work was supported by the “Ministerio de Ciencia y
definitive cluster breakup. The cluster-size distribution ob-Tecnologa [Plan Nacional de InvestigacioCientfica, De-
tained from simulations, however, also accounts for the resarrollo e Innovacio Tecnolgica (I+D+1),” Project MAT
cently produced fragments that may not survive the nexR000-1550-C03-0L G.O. is grateful for financial support
simulation step. Depending on the importance of this effectfrom the European Union(Program: alfa, proposal No.
one expects the equilibrium weight average cluster sige  ALR/B7-3011/94.04-6.017)9

V. CONCLUSIONS
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